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Fig. 6. Alternate method to determine position of racket head as a function
of time.

this the resultant output from the liquid potentiometer
should be frequency analyzed to get the ratio of the am-
plitude of the higher mode to the amplitude of the funda-
mental mode.

The shift in the position of the node was also determined
for a single racket when a small mass was taped to the tip.
10 g moved the node approximately 2 cm.

The three definitions of sweet spot all have merit and, in
general, the points corresponding to them are located in
different places. It is assumed that if the ideal tennis racket
could be designed, it would have all three of these points
located at the center of the stringed area and have a power
region and nodal region covering most of the face of the
racket.
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APPENDIX

A second method for observing both the fundamental
and higher modes of oscillation with the handle clamped
was used and it has the virtue of not requiring an oscillo-
scope, scope camera, or explanation of why the water beaker
system works. (The liquid potentiometer is a pedagogical
gem in this author’s opinion.) This second method requires
a light source (laser), mirror chip glued to the racket tip,
rotating mirror, screen, and a camera (Fig. 6). It does re-
quire a certain amount of dexterity and coordination to have
the ball hit the racket during the time interval when the
beam of light is traversing the screen, but with some practice
it was possible to get a good picture most of the time.
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We present a simple introduction to the basic physical ideas involved in the flux
quantization number carried by systems such as magnetic monopoles and vortices. By
using simple geometrical arguments, we see that the flux number is associated with a
hidden symmetry in gauge theory that is topological in origin.

I. INTRODUCTION

Gauge invariance has emerged as one of the most im-
portant fundamental developments of modern physics. The
successful unification of electromagnetism and the weak
force by the Weinberg-Salam theory! has raised the prin-
ciple of local gauge invariance to a level of significance
equal to that of relativity. At the same time, gauge theory
has provided new insight into some unexplained problems
that predate gauge theory by many years. One of these
problems is the existence of so-called superselection rules
for special quantum numbers like the lepton number. Such
quantum numbers appear to obey simple additive conser-
vation rules that are not associated with any known sym-
metry. The origin of the lepton number is still a mystery but
recently it has been discovered that a similar type of
quantum number exists in a variety of gauge theory phe-
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nomena ranging from flux quantization in superconductors
to the understanding of how quarks might be confined
within hadrons. What is interesting about this new quantum
number is that it not only obeys a simple additive super-
selection rule but it also originates from a “topological”
source rather than from a conventional symmetry. Thus it
appears that a “hidden” topological symmetry exists in
gauge theory that might help us to eventually understand
the origin of other superselection rules.

In this paper, we present a simple introduction to the
basic ideas involved in the application of topological con-
cepts in gauge theory. Our purpose is to show that it is
possible to appreciate at least some of the physical impli-
cations of the new topological features of gauge theory
without first having to become an expert in topology. We
will use the tried and true physicist’s approach of starting
from a specific familiar physical example, namely, the

© 1981 American Association of Physics Teachers 819



phenomenon of flux trapping in superconductors, and use
it to teach us most of the topology we need. There is a good
precedent for taking this approach since many physicists
first learn about the theory of abstract Lie groups by
studying the more familiar angular momentum operators
in quantum mechanics.

The sections of this paper are organized as follows. In
Sec. I, we discuss why the superconductor is an ideal
pedagogical device for studying topological effects in gauge
theory. We then reinterpret the superconductor in terms
of gauge theory language in Sec. 111 and use an intuitive
geometrical picture in Sec. 1V to show how the phenomenon
of flux trapping contains “hidden” topological properties.
In Sec. V, we see how the same topological properties can
be uncovered from the canonical Lagrangian description
of superconductivity. In Sec. V1 it is shown that the rules
for adding flux numbers define a new type of symmetry
group. In Sec. VII, the topological ideas learned from flux
trapping are used to study the Dirac magnetic monopole.

II. WHY STUDY THE SUPERCONDUCTOR?

In many respects, the phenomenon of flux trapping in a
superconductor is an ideal pedagogical device for learning
about hidden topological concepts in gauge theory. First of
all, superconductivity itself is one of the simplest real-life
examples of a local gauge theory with spontaneous sym-
metry breaking. As we shall see later, the Lagrangian for
a superconductor even resembles those of simple models in
elementary particle physics. At the same time, one has the
advantage that a phenomenon like flux trapping can be
described and some of its properties can be calculated with
only the use of electromagnetism and elementary quantum
mechanics. Thus no matter how abstract the topology may
become, it can always be related to basic physical con-
cepts.

As described in many texts,? flux trapping occurs in
type-11 superconductors because the magnetic field induces
a flow of Cooper-pair current. This current forms a vortex
that surrounds the magnetic field lines and confines them
to a small region where the conductivity is still normal. The
flux is quantized according to the condition

Flux = f A - dx = 2w Nhe/q, (1)

where g is the Cooper-pair charge and /N is an integer.
Equation (1) is derived from the requirement that the
Cooper-pair wave function be continuous along any closed
path in the superconductor that encircles the flux. The only
advanced mathematics required is Stokes’s theorem. Thus
in this description, there is no overt evidence of any topo-
logical complexities.

How then does one even know that there are any physi-
cally interesting topological properties to be uncovered in
the superconductor? The existence of such properties is
suggested by the fact that the choice of the closed path
around the trapped flux is completely arbitrary. The
quantization condition strongly resembles a contour integral
whose value depends only on the residue of a singularity and
not on the contour of integration. This resemblance is not
entirely accidental. The definition of an analytic function
involves a strong connection between the local and global
properties of the function over the entire complex plane. A
similar kind of global constraint also exists in a system with
broken gauge symmetry. We will see in the following dis-
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cussion how this leads to a relatively simple reinterpretation
of flux quantization as a topological condition.

III. GEOMETRICAL SUPERCONDUCTOR

Topology is an area of mathematics that has something
to do with the global properties of spaces; it tells us why a
doughnut is similar to a coffee cup. Gauge theory, on the
other hand, is based on the invariance of physical laws under
a local internal symmetry. Thus how can a space with global
topological properties be uncovered in the superconductor
vortex? To find the answer, we must first reformulate the
flux quantization problem in gauge theory language. We
will then be able to see that the topological properties we
are seeking are those of the internal symmetry space asso-
ciated with the local gauge group.

The beauty of gauge theory is that it is inherently geo-
metrical. Thus we can use simple geometrical arguments
and even draw some diagrams in place of excessively com-
plicated mathematics. Let us first briefly review the geo-
metrical structure of gauge theory? and then see how to
reinterpret the superconductor as a geometrical system.
Gauge theory involves the marriage of physical space with
an internal symmetry space at each point. The internal
symmetry space of the superconductor is the space of phase
factors that transform under the U(1) gauge group of
electromagnetism. As shown in Fig. 1, physical space is
represented by a horizontal plane and the internal symmetry
space by the vertical line [for the one-dimensional U(1)
space]. The internal space is called a “fiber” by mathe-
maticians.# In this picture, the location of a charged particle
is given by a coordinate point in the horizontal plane and
the phase of the particle’s wave function is indicated by a
coordinate point on the vertical “fiber.” As the particle
moves through physical space, the phase point traces out
a path in the internal space above the particle’s trajectory.
If there is an external gauge potential A that interacts with
the particle, it is interpreted as a geometrical “connection”
in the internal symmetry space in much the same way as a
connection in general relativity. Thus as the particle moves
from x to x + dx, the potential rotates the phase of the
particle by an amount

80 ~ hc/qA - dx, (2)

where g is the charge of the particle. This simple picture can
be directly applied to a superconductor in order to obtain
a geometrical interpretation. The superconductor is a
“self-coherent” system in the sense that it has a built-in
relation between the phase values at different points in
space. This is due to the large overlap of the Cooper-pair
wave functions that produces a long-range correlation that

INTERNAL SPACE FIBERS

—»PHYSICAL SPACE

Fig. 1. Path of a charged test particle in the internal symmetry space as
it moves through an external gauge field. The same picture also represents
a graph of the intrinsic phase relation of the superconductor wave func-
tion.
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Fig. 2. Picture of the internal symmetry space after it has been wrapped
around in a circle so that phase angles of zero and 27 coincide. The phase
of a moving particle traces out a path on the surface of a cylinder.

locks the phases together coherently over macroscopic
distances. The path in the internal symmetry space in Fig.
1 can thus be interpreted as a graph of the intrinsic phase
relation of the superconductor.

When magnetic flux is trapped in the superconductor,
a potential conflict arises between the intrinsic phase rela-
tion of the superconductor and the magnetic field. The
magnetic field tries to rotate the local phase of the Coo-
per-pair wave function just as it would the phase of a free
particle but it cannot because the phases are locked to-
gether. This conflict is resolved either by destroying the
superconductivity if the magnetic field is too strong or by
breaking the gauge symmetry of the magnetic field and
forcing it to be consistent with the phase relation of the
superconductor. This means that the trapped magnetic
field, or more precisely the vector potential field A, when
acting on a particle, will produce a phase change in the wave
function that is the same as the phase relation of the sur-
rounding superconductor.

We now see how to reinterpret the superconductor in
terms of gauge theory language. The phase of the wave
function is considered to be a geometrical coordinate in the
internal symmetry space. At a certain phenomenological
level, many of the interesting consequences of supercon-
ductivity, such as flux quantization, can be described in
terms of the behavior of the phase factor. Since the phase
is an internal space coordinate, this means that some of the
physical properties of the superconductor can be related to
the purely geometrical and topological properties of the
internal space. This type of description is very similar to that
of general relativity where the effect of the gravitational
field is described by motion in a curved space.

IV. TOPOLOGY UNCOVERED

Let us first consider the topology of the internal space
without flux trapping since it is easier to visualize. At any
fixed position x in the superconductor, the phase of the wave
function will have a value between 0 and 2#. Continuity of
the wave function further requires that the phase values of
0 and 27 must coincide. Thus the internal space at each x
is equivalent to a one-dimensional circular loop with the
phase being a coordinate on the loop. As we move from x
to an adjacent location x + dx, the phase must change
continuously in accordance with the intrinsic phase relation
of the superconductor. The phase coordinate will therefore
trace out a path on the surface of a cylinder as shown in Fig.
2. Hence, from the point of view of an “internal observer,”
the superconductor looks like it has the global topology of
a cylindrical space.

When flux is trapped in the superconductor, the topology
of the internal space becomes more complicated because
the phase relation does not hold in the region where the
conductivity is still normal. We can map out the new to-
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pology by using the familiar device of a test charge and
observing how its phase varies as we move it around the
vortex region. How do we know that the test charge phase
will really follow the phase of the superconductor and not
deviate due to the effect of the trapped magnetic field? The
answer is that the gauge symmetry breaking described in
Sec. 1] guarantees that the magnetic field can only produce
a phase change that is the same as the phase relation of the
superconductor. Thus the test charge will faithfully trace
out the convolutions of the superconductor phase.

After we move the test charge around a closed path en-
circling the vortex region, we see that it must have the same
phase value as it did initially due to the continuity of the
superconductor wave function. However, the phase of the
test charge may have been rotated by the magnetic field
through integer multiples of 27 while the charge moved
along the path. Thus we conclude that the phase coordinate
traces out a path on a surface shaped like a doughnut or
torus as shown in Fig. 3. It might be argued that this con-
clusion is obvious because we have only taken the cylindrical
space in Fig. 2 and wrapped it around a closed path and
joined the ends together. However, if there is no trapped flux
in the center of the torus, the closed path can be made
smaller and smaller until there is no torus. The trapped flux
makes a hole in the superconductor so that the path of the
test charge cannot be arbitrarily shrunk down to a point.
The presence of this hole is therefore essential to the to-
pology of the internal symmetry space. This situation is very
similar to the Aharonov-Bohm effect’ where the particle
also is not allowed to enter the magnetic field region.

Let us now see how the flux quantization condition, Eq.
(1), can be reinterpreted in terms of the topological prop-
erties of the internal space. The vector potential A generates
the phase rotation as given by Eq. (2). The loop integral in
Eq. (1) is proportional to the total change in the phase
during one complete trip around the vortex. Since the phase
can only be rotated by integer multiples of 27, we see that
the flux quantum number N is equal to the number of times
that the phase coordinate winds around the torus.

At this point, if we were to communicate our results to
a real mathematician, he would tell us that the toroidal
internal space we have uncovered is an example of a
“multiply connected” space and that we have also just
rediscovered a topological quantity known as the “winding
number.”® What is surprising about this result is not the
complicated topology uncovered in the superconductor but
rather the fact that a physically measurable quantum
number /V can be reinterpreted as a topological property
of a geometrical symmetry space. It is interesting to com-
pare this with general relativity that shows us that the
classical gravitational force can be geometrized. Gauge

A

‘/

Fig. 3. ‘Topological picture of the internal symmetry space for a closed
path around the vortex. The cylinder in Fig. 2 has been wrapped around
the trapped flux and the ends joined together, forming a torus.

K. Moriyasu 821



theory seems to be telling us that certain types of quantum
effects can also be interpreted as geometrical, albeit in an
unusual type of space.

V. CANONICAL VORTEX

A. Lagrangian

Up to this point, our discussion has relied almost en-
tirely on very intuitive geometrical arguments. In this sec-
tion, we will compare our geometrical approach with the
more formal canonical Lagrangian description of super-
conductivity. We will not duplicate the treatment already
presented in existing publications. Instead, we will use our
geometrical ideas as a guide in order to see what sort of
arguments are needed to uncover the topological properties
within a canonical Lagrangian formalism.

For our purposes, it is sufficient to use the simplest pos-
sible model Lagrangian for a charged scalar field ® (of
Cooper pairs) interacting with an external electromagnetic
field. A particularly convenient choice is the phenomenoi-
ogical model of Higgs,” which also happens to be the rela-
tivistic version of the Ginzburg-Landau® model of super-
conductivity. It also is one of the simplest gauge models with
broken symmetry encountered in elementary particle
physics. The model Lagrangian is given by

L =@IDu2> - V(®) — D|Fuwl> (3)

which is invariant under local gauge transformations of the
electromagnetic gauge group U(1). The first term is the
kinetic energy, where

D,®=(0,—igA,)® (4)

is the “canonical momentum™ or, more accurately, the
gauge covariant derivative operator. Outside of the vortex
region, the covariant derivative vanishes so that the kinetic
energy and the Cooper-pair current are both zero. The
potential

V(®) = p?| @> + M| ®1%)? (%)

describes the self-interaction of the field ® and can be
identified with the free-energy density of the supercon-
ductor. The last term in Eq. (3), involving the Maxwell field
tensor F,, = 0,4, — 0,4, gives the usual energy in the
electromagnetic field.

The polynomial form of V(@) results in a nonzero ground
state for the superconductor given by

®o = (—u?/N)!/2expligh (x)], (6)

which is obtained by finding the minima of V(®) for neg-
ative values of the parameter u2. In principle, the ground
state is degenerate because of the arbitrariness of the phase.
Since V(@) itself is invariant under the group G = U(1),
a gauge transformation can rotate the superconductor
ground state into an infinity of equivalent ground states:

G: q’o - @0/ = exp[iqB’]‘I’o. (7)

However, since the value of the phase is determined by the
intrinsic phase relation of the superconductor, such arbi-
trary local gauge transformations are not allowed. The
ground state therefore breaks the symmetry even though
the Lagrangian is manifestly gauge invariant.

822 Am. J. Phys., Vol. 49, No. 9, September 1981

B. Internal space and topology

How can we now relate this canonical Lagrangian de-
scription to our more intuitive geometrical and topological
picture of the internal space? Clearly the first step is to lo-
cate whatever it is that corresponds to an internal symmetry
space in the Lagrangian approach. This is not a trivial task.
Since we cannot assume the a priori existence of a geo-
metrical internal space within a strictly canonical Lag-
rangian formalism, we have only the gauge symmetry
group itself to work with. Does this mean that we are now
confronted with the problem that we avoided earlier,
namely, having to learn abstract topology and more group
theory as well? Fortunately, the answer is no because we
already have all the mathematical tools that we need from
our prior knowledge of the familiar three-dimensional
rotation group O(3) used in quantum mechanics to study
spin states.

We recall that all orientations of a spin state can be
generated by starting from a fixed initial spin direction, for
example along the z axis, and rotating to the desired di-
rection. The values of the three angles, which specify the
rotation, can be considered as the coordinates of a point
inside an abstract three-dimensional space.? Each point
defines a rotation so that the spin states themselves can then
be identified with the points in this angular space. Fur-
thermore, since any rotation can be implemented as a
continuous sequence of infinitesimal rotations, one can

" define “paths” between the points and use these paths to

determine the topological structure of the space. If one
considers a closed path, which starts from one point and
returns to the same point, it can be seen that there are two
distinct classes of such paths, namely, those that can be
shrunk continuously down to the starting point and those
that cannot. Examples of the two classes of paths are shown
in Fig. 4. The existence of these two classes is related to the
familiar double-valued representations of half-integer spin.
Thus the rotation group has an angular space that is said
to be “doubly connected” from a topological point of
view,

For the U(1) gauge group, the angular internal space is
just the space defined by the local phase values of the su-
perconductor wave function as we discussed earlier. We can
draw this space as the ring of phases as shown in Fig. 5. The
distinct closed paths in the space are those that wind around
the ring a different number of times. Clearly, a closed path
that winds twice around the ring cannot be continuously

Fig. 4. Examples of the two distinct classes of
(@ closed paths in the angular space of the rotation
group O(3). (a) A path that can be shrunk back
down to the point O. (b) The points P and P’ on
opposite ends of a diameter represent the same
rotation. Thus the path cannot be shrunk to a
P point. For further details, see Ref. 9.

&)
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Fig. 5. Ring of phase values
in the internal angular space
of the group U(1).

deformed or shrunk so that it only winds around once. Thus
we see that there are an infinite number of distinct classes
of paths so that the U(1) group internal space must have an
“infinitely connected” topology.

It is possible to associate the distinct classes of paths with
the degenerate ground states of V(®). Each class of paths
represents a phase rotation of 2w N. Although we stated
above that arbitrary gauge transformations cannot be
performed on a ground state, rotations of 27V are allowed.
The reason for this is that a 27N rotation has the same ef-
fect everywhere, i.e., it is global, and therefore it preserves
the intrinsic phase relation of the superconductor. Hence,
a 2w N rotation will transform a ground state into another
perfectly legitimate ground state of V(®). However, the
transformed ground state is not equivalent to the original
ground state because their phases differ by 2wV, which
would violate the continuity requirement of the wave
function. Thus we can associate each distinct class of paths
with a unique ground state, and by doing so, we also asso-
ciate the connectedness of the internal angular space with
the degeneracy of the potential V(®P).

C. Where has the torus gone?

The role of the winding number N is evident in the
above discussion But there appears to be no sign of the torus
in the canonical formalism. In fact, the torus is hidden be-
cause the spatial configuration of the vortex has not yet been
taken into account. In the geometrical presentation in Sec.
IV, we saw that the surface of the torus was traced out by
the phase of the test charge moving along a closed path
around the vortex. No explicit test charge is used in the
canonical approach, but the same purpose is served by the
axial symmetry of the vortex about the direction of the
magnetic field lines. Because of this spatial symmetry, we
can perform the following “gedanken” operation: imagine
cutting through the torus and collapsing the phase windings
together so that they look like a compressed spring. The
angular space represented by this collapsed torus is precisely
the ring of phases in Fig. 5. We note that this gedanken
operation is just the reverse of taking the cylinder in Fig.
2 and wrapping it around the vortex as we did before. The
important point is that there must be two types of closed
paths for the torus; one path winds around N times in the
internal space, the other goes once around the vortex in
physical space. In the canonical Lagrangian formalism, the
physical space path is implicit and only appears in the line
integral of Eq. (1). Thus the torus appears to be hidden.

D. Degenerate vortex

The association of each ground state with a distinct
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class of path, and thus a unique winding number J, leads
to an unusual topological picture of the vortex. The vortex
can be interpreted as a “transition region” between pairs
of different inequivalent ground states.

To see how this interpretation arises, we again use a test
charge to trace out the ground-state phase around the
vortex. We start with the test charge very far away from the
vortex and align its phase with the ground-state wave
function. We then transport the test charge up to the vortex,
move it through the vortex region and see how the phase has
changed. From our preceding discussion, we know that the
phase of the test charge will be rotated by the magnetic field
in the vortex region. Thus if we move the test.charge com-
pletely around the vortex back to its initial position, the
phase will have changed by 27V at the same location. Since
the test charge is just tracing out the phase of the super-
conductor ground state, this means that the test charge must
have emerged into a different ground state. This leads to
a very unusual picture of the vortex as shown in Fig. 6. If
we imagine that the degenerate ground states are all su-
perimposed on top of each other, then the vortex can be
interpreted as a “transition region” between the different
layers of ground states. It is interesting that this interpre-
tation is analogous to a Riemann surface with multiple
sheets.

An interesting consequence of the degeneracy is that it
provides a siniple topological interpretation for the dy-
namical stability of the vortex. We know that circulating
currents actually confine the magrietic field in the vortex.
The degenerate ground states prevent the vortex from
spreading out and dissipating into the surrounding super-
conductor. The reason for this is that the vortex connects
different ground states. If the vortex were to “decay,” dif-
ferent ground states would then coincide and violate the
continuity requirement for the ground-state wave functions.
Thus the stability of the vortex can also be interpreted as
a topoldgical property.

We see from the preceding discussion that one has to
resort to a relatively complicated group-theoretical argu-
ment within the canonical formalism in order to uncover
geometrical or topological properties associated with the
superconductor. It is clear, however, that the value of
studying the model Lagrangian is that it provides some
insights into the relationship between the details of the su-
perconductor and the topology that are less obvious in the
more general geometrical description.

VI. HOW TO ADD THE FLUX NUMBER

Let us now use the results of Secs. II-V to see how the

FLUX
o yoRTEX
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Fig. 6. Topological picture of the vortex shown as a transition region be-
tween ground states of different winding number.
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Fig. 7. Two separate vor-
tices with different flux
N N/ numbers NV and NV’

flux number N can be interpreted as a good additive
quantum number. The question we want to address is the
following: given two separate vortices as in Fig. 7, with in-
dividual flux numbers N and N’, can we consider the
composite system of two vortices to be equivalent to a single
vortex with flux number N + N’? To answer in the affir-
mative, we need to show that the sum N + N’ is a valid
winding number.

We will again use our test charge to determine the
properties of the two-vortex system. We want to show that
if we move the test charge around each vortex separately,
then the net change in phase is the same as that obtained
from moving the test charge along a single loop around both
vortices. We perform the first part of the operation as shown
in Fig. 8(a). Starting from the point x, the test charge is
moved around one vortex along the closed loop C and then
around the second vortex along C’. The phase changes along
C and C’ are 27N and 27w N’, respectively. In order to add
the phase changes, we must be sure that there is no addi-
tional phase change at x when the test charge is switched
from C to C’. This question arises because each vortex is
surrounded by its own ground states and these ground states
must be matched up at x. It is clear that there cannot be a
phase difference greater than 2# at x because this would
allow a transition between ground states. Phase differences
of less than 2 7 could occur because the ground states are
not unique; they actually belong to distinct classes of gauge
equivalent ground states. However, equivalent ground states
will give the same contribution to the net winding number.
We therefore conclude that the flux numbers of the two
vortices can be added together to yield a net flux number
N + N’ for the system. .

To see that N + N’ is also the flux number for a single
path around both vortices, we will show that the loops C and
C’ can be changed into a single loop. We are allowed to
distort the loops as long as the flux is completely encircled
by the distorted loops and the winding number is un-

C/

Fig. 8. (a) Closed loops C
and C’ used to determine
the phase change around
separate vortices with flux
numbers N and N’, re-
spectively. (b) Loops C
and C” are converted into
a single loop around both
vortices by moving end-
points from x to y. Phase
changes along pieces of
loop patched in between x
and y cancel so that they
can be ignored.
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changed. The procedure for altering the loops is illustrated
in Fig. 8(b). The endpoint of C and the starting point of C’
are moved from x to a new point y. We are effectively cut-
ting the torus and *““patching in” a new piece between x and
». The net flux number remains unchanged because any
extra phase change that we have introduced from x to y
along C is cancelled by a change from y to x along C”. The
path segment between x and y can then be ignored and we
are left with a single continuous loop around both vortices.
This argument is also reversible since the segment between
x and y can be shrunk back down to a point. Thus we finally
conclude that the flux number of the single loop is indeed
the same number as the sum of the two loops.

The geometrical path approach for adding flux numbers
has the virtue that it leads to a general symmetry structure
that is valid for systems other than the vortex. The manip-
ulations we used to merge the loops C and C” into a single
loop actually define a new “hidden” symmetry group for
the flux number. This unusual group consists of the closed
loops themselves with their associated winding numbers plus
a definition of the “product” of two loops. A closed loop with
winding number N is taken to be the Nth element of the
group. The identity or null element is a loop with N = 0; it
does not encircle any net flux so that it can be shrunk down
to a point. The inverse of a loop is another loop that winds
in the opposite direction and thus has negative winding
number. As we saw above, two loops with winding numbers
N and N’ can be combined to form a new single loop with
winding number N + N’. This defines the “product” of two
loops. Since the order of the loops is not physically relevant,
the product is clearly commutative and the group is Abelian.
A product can be formed of loops around separate vortices
or around one vortex. For example, the two cases shown in
Fig. 9 both give a product loop with net flux number equal
to zero but with very different physical interpretations. The
first case is just a loop that does not circle the vortex while
the second case shows a system consisting of a vortex and
an antivortex with net flux number equal to zero.

The group of closed paths is called the “fundamental
group” !0 and is symbolized by

L[], ()

where the subscript refers to the one-dimensional closed
path in physical space around the vortex. The U(1) gauge
group is shown explicitly in the brackets to indicate that the
closed loops, which are the group elements, are defined in

Fig. 9. Examples of product
of two loops giving net flux
number zero. (a) Product that
does not circle the vortex. (b)
Product that circles vortex-
antivortex system with total
flux zero.
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the U(1) angular internal space. Since each element of the
group is labelled by a unique integer winding number N,
the group is also said to be equivalent to the integers
themselves, which form an additive Abelian group (denoted
by Z); hence, one can write symbolically

II,[U()] ~ Z. )]

This equivalence relation neatly summarizes the “hidden”
symmetry that underlies the flux quantum number. It also
graphically demonstrates just how well the symmetry is
hidden from view. A group like II; is rarely encountered in
other areas of physics because it is not directly related to
any coordinate transformation like most familiar symmetry
groups. In fact, II, could be regarded as uniquely charac-
teristic of gauge theory because it arises out of the rela-
tionship between sets of paths in the two entirely different
types of spaces that are married together by gauge
theory.

VII. DIRAC MAGNETIC MONOPOLE

One of the most interesting applications of the topolog-
ical ideas we have discussed is the recent resurrection of the
classic Dirac magnetic monopole. The magnetic monopole
has been sought both experimentally and theoretically as
the missing link needed to symmetrize Maxwell’s equations.
Dirac!! showed 50 years ago that if the magnetic monopole
existed, then the flux must be quantized according to the
relation

Flux = 2w Nhc/e, (10)

where N is the same flux number as in the case of the vortex.
Recently, Wu and Yang!? re-examined Dirac’s results
within the context of gauge theory and found that the
quantization of the monopole flux also could be interpreted
as a topological condition.

We can apply the concepts uncovered in the study of the
vortex to gain some insight into the nature of the monopole.
Dirac’s quantization condition is essentially identical to the
vortex condition given by Eq. (1) and originally was derived
by using very similar physical arguments. In analogy with
the electron, the monopole is supposed to be a pointlike
source of a magnetic “Coulomb field”

= —gV(1/r), (11)

where g is the strength or ““magnetic charge.” By using an
electron as a test charge, the flux can be related to the
change in phase of the electron wave function. Assuming
that the field around the monopole is spherically symmetric,
one can calculate the phase change along a closed path C
on a spherical surface surrounding the monopole as shown
in Fig. 10,
The net phase change is given by

80 = (e/hc) f cA-dx = 27N, (12)

The quantization condition results from the continuity re-
quirement imposed on the electron wave function just as in
the case of the vortex.

An essential complication now arises when one tries to
use Stokes’s theorem to relate the phase change to the
monopole flux. The closed loop C can be taken as the
boundary of either one of the two hemispheres S and S’ in
Fig. 10. Thus we see that
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f cA - dx = Flux(S) = Flux(S). (13)

The net flux out of the sphere is the difference of Flux(S)
and Flux(S”), which gives zero and clearly makes no sense.
Dirac resolved this contradiction by concluding that there
must be some kind of singularity in the magnetic field that
passes through the spherical surface. In order to calculate
the net flux, a hole has to be cut in the surface to avoid the
singularity. The net flux out of the remainder of the sphere
would then be nonzero, thus resolving the contradiction and
giving the Dirac quantization condition.

Wu and Yang recently showed that the quantization
condition could be derived without explicitly invoking
singularities if the magnetic field was reinterpreted as a
multiply connected field. The vector potential A around the
monopole is considered to be multivalued so that different
potentials A and A’ are used to calculate the flux through
S and S’, respectively. Along the closed path C, the po-
tentials are related by a gauge transformation

A=A —i(hc/e)U'VU, (14)
where the transformation U has the form
U = exp[iN(x)]. (15)

In order for U to be single valued along C, the phase factor
A is required to satisfy the condition

f cVA-dx =27N. (16)

This equation takes the place of the continuity condition on
the electron’s wave function. Using Eq. (14) in Stokes’s
theorem then gives the phase change

80 = (e/hc) f c[A” — A]-dx

=‘¢‘CV)\-dx=21rN

= (e/hc)[Flux(S’) — Flux(S)], (17)

which leads once again to Dirac’s quantization condition.

The Wu-Yang derivation appears to give the impression
that there are no singularities in the field. However, it has
been argued by Barut,!3 using different techniques, that the
singularities must be real. If this is so, how can a singularity
be equivalent to a multiply connected field? We can answer
this question with a simple analogy from the theory of
complex variables. Let us consider the case of a function
such as logz, which has a branch cut singularity. It is well
known'4 that if we replace the z plane with a Riemann
surface with multiple sheets, then logz can be treated like
a single-valued function without a branch cut. A similar
situation occurs in the Wu-Yang derivation. The Riemann

Fig. 10. Spherical surface of integration
around Dirac magnetic monopole of
magnetic charge g.
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surface is the analog of the multiply connected internal
phase space and the gauge transformation, Eq. (14), tells
us how the potential changes from one “sheet” to the next.
Thus we see that the interpretations of Dirac and Wu-Yang
can be perfectly compatible.

" The properties of the monopole and the vortex provide
an interesting contrast. The flux quantization conditions
are essentially identical, yet the Dirac monopole is supposed
to be a fundamental particle like the electron while the
vortex is a complicated dynamical system. In addition, the
gauge symmetry of the monopole is not broken. There also
are no degenerate ground states associated with the mo-
nopole; thus the multivaluedness of the field cannot be
blamed on the degeneracy of the ground states and the
monopole cannot be interpreted as a “transition region” like
the vortex. In fact, one might say that the monopole re-
sembles a vortexlike system in which all of the underlying
physical mechanisms have been hidden. Thus the topolog-
ical properties of the monopole appear more “abstract” than
those of the vortex.

VIII. DISCUSSION

We have seen that an amazingly rich topological struc-
ture can be uncovered from a systematic study of the well-
known phenomenon of flux trapping. By using the familiar
pedagogical device of a test cliarge and simple geometrical
arguments, the flux quantim number N is shown to be as-
sociated with a new type of “hidden” symmetry. The new
symmetry is not based on the usual type of transformation
laws but rather is topological in origin.

The two examples of the vortex and the Dirac magnetic
monopole demonstrate that topological quantum numbers
can arise in very different types of physical systems. We saw
that the flux quantization equations were essentially iden-
tical, yet the underlying physics could hardly be more dif-
ferent. The vortex is an intricate dynamical system while
the monopole is supposed to be an elementary particle like
the electron. This contrast between the vortex and the
monopole clearly shows that the topological quartum
number is independent of the details of the particular system
and is based on very general principles.

The discovery of physically relevant topological prop-
erties in gauge theories has stimulated many new investi-
gations. By examining gauge theory models with more
complex non-Abelian gauge groups G. t"Hooft and others!>

have found new monopolelike solutions with interesting
properties in a variety of gauge models. It has also been
suggested'® that the kind of topological stability seen in the
vortex may provide some insight into how quarks are con-
fined inside hadrons.
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PROBLEM: QUANTIZED RELATIVISTIC MOTION OF A

HARMONIC OSCILLATOR

826

Use the Bohr quantization condition to find the energy
levels of a relativistic one-dimensional harmonic oscillator.
(The solution is on page 849.)
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